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 Kalman-like filter – all densities are Gaussian 
 histogram filter – represent density as histogram over the 

entire domain of the state 
 particle filter – represent density as a (large) set of samples 

drawn from the density 
 samples are called particles 

 
 

 each particle                          is a concrete instantiation of the state 
at time t  
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Particle Filter Localization 
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 consider a robot moving down a hall equipped with a sensor 
that measures the presence of a door beside the robot 
 the pose of the robot is simply its location on a line down the 

middle of the hall 
 the robot starts out having no idea how far down the hallway it is 

located 
 robot has a map of the hallway showing it where the doors are 



Particle Filter Localization 
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 the robot starts out having no idea how far down the hallway 
it is located 
 particles with equal weights are randomly drawn from a uniform state 

density 

 

• height of particle is proportional to its weight 
• the weights are called importance weights  



Particle Filter Localization 
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 because the robot is beside a door, it has a measurement 
 it can incorporate this measurement into its state estimate 
 particles are reweighted based on how consistent each particle is 

with the measurement 

 

low weight low weight low weight 



Particle Filter Localization 
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 the existing particles are resampled with replacement where 
the probability of drawing a particle is proportional to its 
importance weight 

• resampling produces a set of particles with equal importance weights that 
  approximates the density 
• the resampled set usually contains many duplicate particles (those with high 
  importance weights) 
• the resampled set will be missing many particles from the original set (those 
  with low importance weights) 



Particle Filter Localization 
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 the particles are projected forward in time using the motion 
model 



Particle Filter Localization 
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 because the robot is beside a door, it has a measurement 
 it can incorporate this measurement into its state estimate 
 particles are reweighted based on how consistent each particle is 

with the measurement 

 



Particle Filter Localization 

3/13/2012 10 

 the existing particles are resampled with replacement where 
the probability of drawing a particle is proportional to its 
importance weight 



Particle Filter Localization 
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 the particles are projected forward in time using the motion 
model 
 



Particle Filter Localization Algorithm 
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1. algorithm  pf_localization(                  ) 
2.              empty set 
3. for m = 1 to M  
4.               sample_motion_model(          ) 
5.               measurement_model(              ) 
6.   
7. endfor 
8.       resample (    ) 
9. return  
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Resampling Algorithm 
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1. algorithm  resample(     ) 
2. for m = 1 to M  
3.      draw i with probability  
4.      add       to  
5. endfor 
6. return  
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Drawing Particles 
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i importance weights cumulative sum normalized sum 

1 0.0846 0.0846 0.0235 
2 0.0769 0.1615 0.0449 
3 0.0895 0.2510 0.0698 
4 0.4486 0.6995 0.1945 
5 0.9505 1.6500 0.4588 
6 0.6019 2.2519 0.6262 
7 0.1720 2.4239 0.6740 
8 0.2853 2.7092 0.7534 
9 0.0301 2.7393 0.7618 

10 0.8567 3.5960 1.0000 

compute this then this 

then generate M random number uniformly distributed between 0 and 1   



Drawing Particles 
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i importance weights cumulative sum normalized sum random numbers particle 

1 0.0846 0.0846 0.0235 0.5261 6 
2 0.0769 0.1615 0.0449 0.5154 6 
3 0.0895 0.2510 0.0698 0.8847 10 
4 0.4486 0.6995 0.1945 0.0286 2 
5 0.9505 1.6500 0.4588 0.3836 5 
6 0.6019 2.2519 0.6262 0.5928 6 
7 0.1720 2.4239 0.6740 0.4528 5 
8 0.2853 2.7092 0.7534 0.3306 5 
9 0.0301 2.7393 0.7618 0.5034 6 

10 0.8567 3.5960 1.0000 0.7134 8 

find the first normalized sum 
entry that this is less than 

• this algorithm is known as “roulette wheel sampling/selection” 
• inefficient as it requires generating M random numbers and M binary searches 
• “stochastic universal sampling” is often used instead 



Sampling Variance 
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 an important source of error in the particle filter is the 
variation caused by random sampling 

 whenever a finite number of samples is drawn from a 
probability density, the statistics extracted from the samples 
will differ slightly from the statistics of the original density 
 e.g., if you draw 2 samples from a 1D Gaussian and compute the 

mean and variance you will probably get a different mean and 
variance from the original probability density 
 however, if you draw 100 samples then the mean and variance will probably 

be very close to the correct values 



Sampling Variance 
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Resampling Issues 
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 there are many issues related to resampling and how to 
perform good resampling 

 notice that resampling as we have described it causes some 
particles to be eliminated and some to be duplicated 
 continuous resampling will eventually cause all of the particles to be 

duplicates of a small number of states 
 some PF implementations will add a small amount of noise to the 

particles so that they are not exact duplicates 



Particle Deprivation 
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 it may happen that there are no particles near the correct 
state 
 this can happen because of the variance in random sampling 

 an unlucky series of random numbers can wipe out all of the particles near 
the correct state 

 when this occurs the filter estimate can become arbitrarily incorrect 

 occurs mostly when the number of particles is too small for 
the dimensionality of the state 
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